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Beyond the Environmental Kuznets Curve:
Diffusion of Sulfur-Emissions-Abating

Technology

DAVID I. STERN

The environmental Kuznets curve (EKC) has been extensively criticized on
theoretical and empirical grounds. In this article, the EKC is reformulated as
the best practice technology frontier—countries’ distances from the frontier
reflect the degree to which they have adopted the best practice technology in
emissions abatement. The Kalman filter is used to model the state of sulfur
emissions abatement technology in a panel of 15 mainly developed countries.
The results are used to determine whether and how fast countries are converg-
ing to best practice throughout time and what variables affect the level of tech-
nology adopted. The results show that with the exception of Australia, coun-
tries are converging toward the frontier but have settled into low pollution
abatement and high pollution abatement groups. Preabatement levels of pollu-
tion, income per capita, population density, and perhaps cultural factors might
partly explain the level of abatement adopted.
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The environmental Kuznets curve (EKC) model1 has been extensively
criticized on econometric grounds (Harbaugh, Levinson, & Wilson,
2002; Koop & Tole, 1999; Millimet, List, & Stengos, 2003; Perman & Stern,
2003; Stern & Common, 2001). This article is part of an emerging litera-
ture2, which goes beyond the environmental Kuznets curve to develop
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1. See the introductory article by Heil and Leifman (2005) for a definition and survey.
2. In addition to the econometric frontier models discussed below, a number of recent

decomposition studies evaluate the contributions of the major proximate factors–scale,
output and input mix, and technological change–to changes in emissions using index num-
ber approaches and a variety of econometric models (Antweiler, Copeland, & Taylor, 2001;
Bruvoll, Fæhn, & Strøm, 2003; Bruvoll & Medin, 2003; de Bruyn, 1997; Hamilton & Turton,
2002; Hettige, Mani, & Wheeler, 2000; Hilton & Levinson, 1998; Selden, Forrest, & Lockhart,
1999; Zhang, 2000).
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better-specified models that model the effects of various variables, such
as input and output mix, and the state of technology on the level of emis-
sions. The focus of this article is on measuring how abatement technol-
ogy diffuses across countries, which vary widely in their abatement
efficiency.

In a survey of the EKC literature and its extensions, Stern (2004b)
finds that although concentrations of air pollutants in urban areas do
seem to follow an inverted-U–shaped path, per capita emissions of
important pollutants at the national level appear to be increasing
(monotonic) in income. However, changes in technology can lead with
time to reductions in pollution—a lowering of the EKC—in both devel-
oping and developed countries. Case studies, particularly from China,
show that pollution-reducing innovations and standards may be
adopted with relatively short time lags in some developing countries
(Dasgupta, Laplante, Wang, & Wheeler, 2002; Gallagher, 2003; Jiang &
McKibbin, 2002; Wang & Wheeler, 2003). Stern (2004b) proposes that at
middle-income levels, rapid growth can overwhelm these clean-up
efforts, which have more effect in slower-growing higher income coun-
tries. Anew theoretical model developed by Brock and Taylor (2004) for-
malizes this insight.

Production frontier models3 constitute a natural framework within
which to study how technology diffuses across countries. These models
allow some countries to produce outputs or emit pollutants with the best
practice technology, whereas other countries are operating behind the
frontier using a technology that is less efficient than the best practice.
Koop (1998) and Zaim and Taskin (2000) estimate global production
frontier models where carbon dioxide emissions are either treated as an
input (Koop, 1998) or treated as an undesirable output (Zaim & Taskin,
2000). Stern’s (2002) econometric decomposition model can be inter-
preted in a similar way.4

Existing modeling frameworks have, however, important limitations.
Existing stochastic frontier and panel5 regression approaches model
the differences between the state of technology in each country in
either a random, fixed, or deterministically changing manner. Panel
approaches—fixed effects and random effects regression—allow the
frontier technology to evolve stochastically with time, but all countries
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3. Aproduction frontier is a generalization of a production function to the case of multi-
ple outputs.

4. Reinhard, Lovell, and Thijssen (1999); Fernandez, Koop, and Steel (2002); and
Lansink and Silva (2003) apply similar methods at the microeconomic level to pollution
from fertilizer use in agriculture.

5. A panel data set consists of time series observed for a number of individuals, firms,
countries, and so forth. Panel regression methods allow for heterogeneity of some of the
regression coefficients across the different individuals.
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are forced to remain a given distance from the frontier. This means that
the technology is common to all countries, but each country has fixed
level of inefficiency in adopting or using the technology. Stochastic fron-
tier methods allow the distance to vary randomly, but the technology
can only change deterministically. By contrast, Data Envelopment Anal-
ysis—a linear-programming technique—allows both the frontier itself
and the distance from the frontier of each country to vary in every time
period in an arbitrary manner. Productivity growth is then decomposed
into technological change and technical efficiency change components
using Malmquist index numbers (for details, see Färe, Grosskopf,
Norris, & Zhang, 1994). However, this methodology does not allow any
measurement error or provide an estimate of the parameters of a
production frontier that could be used to test hypotheses or forecast
future emissions.

This study builds on econometric panel models to begin to model the
diffusion and adoption of pollution-abating technology in a more realis-
tic and flexible way. The Kalman filter is an algorithm for estimating
complex time-series-regression-type models that, in addition to
observed explanatory and dependent variables, can include unobserved
time-varying state variables. I use the Kalman filter to model the state of
technology in emissions abatement—a productivity indicator—in each
country as an unobserved variable that evolves stochastically through-
out time. The Kalman filter can estimate separate values of this unob-
served technology state in each year in each country by imposing a mini-
mally restrictive recursive structure on the dynamics through which the
state of technology evolves throughout time. Such a model is equivalent
to estimating a separate regression intercept term for every year in every
country, which is impossible with conventional regression techniques.
The evolution of the state variables can occur either independently from
other countries or in association with technological change in other
countries. Thus, we can test whether the abatement technology is com-
mon across countries or differs in each country, and countries can move
toward or away from the frontier in complex time-dependent ways.

The model is applied to a dataset for sulfur dioxide emissions from 15
largely developed countries that have complete data. The methodology
has two stages. In the first stage, a production frontier model is esti-
mated, and inefficiencies for each country in each time period are
derived. In the second stage, I carry out an exploratory analysis to deter-
mine if systematic behavior can be discerned in the inefficiencies
throughout time that represents a diffusion of innovations or technolog-
ical catch-up process and determine the speed of such a convergence.

The main sections of the article proceed as follows: Development of
the Econometric Model and Methods, Data Sources and Characteristics
and Cointegration Testing, Results and Analysis, and Discussion and
Conclusion.
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Development of the Econometric Model and Methods

EMISSIONS FRONTIER MODEL

A distance function is a specialized form of production frontier
model, with possibly multiple outputs and inputs, that is normalized to
indicate the relative distance of the actual levels of outputs and inputs
from a best practice frontier (see Färe et al., 1994; Färe, Grosskopf, Lovell,
& Pasurka, 1989). This distance is an indicator of the technical ineffi-
ciency of production. It is possible to measure that distance in any direc-
tion in the multidimensional production space. Usually, distance is mea-
sured in input or output directions as these directions conform with
conventional notions of production inefficiency. Output distance mea-
sures by how much output could be increased if best practice was used,
whereas input distance measures by how much inputs could be reduced
to produce the same level of output. Chung, Färe, and Grosskopf (1997)
introduced the measurement of distance in the direction of both desir-
able and undesirable outputs (pollution) but still do not measure a con-
cept of environmental efficiency or relative efficiency in pollution
abatement.

Figure 1 illustrates a distance function for measuring environmental
efficiency. To keep things simple, I show only one input variable, z.6 If
emissions in country i in year t are E2 and the input-output variable is z1,
then distance in the emissions direction is dit = E2/E1. The best practice
level of emissions is E1, which is the level of emissions for input z1 so
that d = 1. (E1, z1) is, therefore, a point on the emissions frontier (E,z | d =
1}. The points below and to the right of the frontier are not technically
feasible. Those above and to the left of the frontier are inefficient or at
least not using the best practice technology. The notion implicit in this
efficiency measure is that given a particular desired level of output and
productivity in producing output from inputs, a particular level of
inputs is required. Then, given those input requirements and productiv-
ity in the production of emissions from inputs, certain levels of emis-
sions are implied. An alternative measure of emissions efficiency could
measure efficiency of emissions production relative to both inputs and
outputs. However, the decomposition into the effects of general techno-
logical change and emissions-specific technological change could not
then be achieved.

Reinhard, Lovell, and Thijssen (1999) developed the first specific
indicator of environmental efficiency. They compute this in an indirect
way by solving the estimated production frontier for the level of the
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6. Of course, we can think of z as a vector of inputs, as we do in my econometric model.
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undesirable input that sets the inefficiency error in the output direction
to zero. Fernandez, Koop, and Steel (2002) directly estimate the level of
environmental efficiency but make some separability assumptions so
that they can write down separate frontiers for a function of the good
outputs as a function of the inputs and for a function of the bad outputs
as a function of the outputs alone. Then, they can separately define tech-
nical and environmental efficiency as the ratios of potential aggregate
output to actual aggregate output in the two different separate models.
The frontier estimated by Stern (2002) is a more general approach that
allows direct estimation of environmental efficiency.

I assume an international emissions distance function as seen in
Equation 1,

fit(Eit, yit, xit, Ait) = dit, (1)

where yit is a vector of J outputs individually indexed by j in country i in
year t, x is a vector of K inputs individually indexed by k, E is emissions,
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Figure 1: Emissions Frontier and Efficiency
Note: E = emissions; z = input variable.
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and A represents the state of best practice-emissions-abatement technol-
ogy. d ≥ 1 is relative technical efficiency in emissions abatement. f() is
decreasing in E and x and increasing in y and A. f is homogenous of
degree minus one in emissions and of degree zero in the outputs y. This
means that increasing all outputs proportionally has no effect on emis-
sions as an increase in output holding input constant is an increase in
total factor productivity (TFP). I assume that this increase in knowledge
does not itself change the level of pollution. The effect of knowledge on
pollution abatement is indicated by the variable A. Changing the mix of
outputs does, however, affect the level of emissions. Changes in A indi-
cate changes in emissions that occur holding the levels and mix of inputs
and outputs as well as distance constant. Total factor productivity of y
with respect to x is modeled implicitly but does not need to be explicitly
included as a variable in the model that is estimated.

Following Stern (2002), I specialize (Equation 1) by imposing separa-
bility of emissions and the other variables and separability between
inputs x and outputs y. Emissions-abating technological change is
assumed to be factor and output neutral. These conditions imply that
emissions can be placed on the left-hand side of the equation and all
other variables (including distance) on the right-hand side (RHS). It fur-
ther implies that the technological change indicator (A) multiplies the
entire function and does not interact with any of the variables. This
means that although the level of abatement can vary across sectors, there
is no difference in the rate of change in emissions abatement in the differ-
ent output sectors or associated with use of the different inputs.

Andreoni and Levinson (2001) proposed that scale economies may be
important in pollution abatement. Because I model abatement activity
via the state of technology (A), the Andreoni-Levinson proposition
amounts to a correlation between the state of technology and the size of
the economy. This will be tested in the second stage of the analysis.
Plassmann and Khanna (2003) propose that emissions may not increase
linearly in consumption, even before abatement. Larger economies can
be served, for example, by larger, more efficient electric power stations,
as what it appears to be happening in China recently (Zhang, 2000).
Stern (2002) assumes that emissions are homogenous of degree one in
the inputs, which is equivalent to constant returns to scale. We can model
the Plassmann-Khanna hypothesis by allowing the degree of homoge-
neity of emissions in the inputs to differ from unity.7
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7. Of course, the Plassmann-Khanna (2003) hypothesis is in terms of outputs and not
inputs. Therefore, my approach only models the effect of scale on the sulfur emissions per
unit input and does not include scale effects on the amount of input required per unit out-
put. The latter effects are implicitly included in my indicator of total factor productivity in
each country.
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I use a logarithmic or Cobb-Douglas function, which is the simplest
function with desirable properties, to model the production frontier in
Equation 2,

ln ln ln lnE d A y xit it
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where dE and AE are distance and the state of best practice technology in
emissions abatement, respectively, and are modeled as a stochastically
trending state variable using the Kalman filter. There are four output
variables, yk: agricultural, nonmanufacturing industry, manufacturing,
and services value added. γx is the returns to scale in inputs parameter. uit

is a random error term representing measurement error or short-run
optimization error, which may be correlated across countries. Because
some inputs, such as nuclear power, oil refining, or zinc smelting, are
zero in some countries in some years, a function that can accommodate
zero values for some inputs is needed to introduce the inputs into the
model. As in Stern (2002), I use a linear function of the inputs, which is
homogenous of degree one and makes the (questionable) assumption
that the inputs are infinitely substitutable for each other. The inputs xj are
consumption of coal, oil, natural gas, hydropower, nuclear power, and
biomass energy; primary smelting of copper, lead, zinc, and nickel; and
oil refining (primary supply of crude oil). As emissions are homogenous
in the inputs, the model is not identified,8 unless a restriction is placed on
the parameters in Equation 2 or on the state of technology. I use the
restriction,

j
Σβ j = 1. Equation 2 is actually estimated as a group of sepa-

rate time series equations, one for each country.

MODELING TECHNOLOGICAL CHANGE USING THE KALMAN FILTER

The Kalman filter is an algorithm that originated in control engineer-
ing (Kalman, 1960) for estimating unobserved time-varying state vari-
ables and that has numerous applications in modern time-series econo-
metrics (see Hamilton, 1994; Harvey, 1989). The first step in applying the
Kalman filter to an estimation problem is to reformulate the model in
question in terms of a state-space model. A state-space model includes
both a system of regression equations as in Equation 2—known as the
measurement equations—and a second system of equations—known as
the transition equations—which model the evolution of the unobserved
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8. A nonidentifiable econometric model is one that cannot be estimated, as more than
one set of parameter estimates are compatible with the same error terms. Identification
ensures that there is a unique vector of regression coefficients.



Copyright 2005. Permission granted by Sage Publications

state variables. The transition equations are very similar in form to
regression equations for autoregressive time-series models; but instead
of regressing observed variables on their lagged values, the unobserved
variables are modeled as a function of their past values, possibly other
variables, and random errors. The values of the state variables are con-
strained because they appear in both the measurement equations, which
involve observed variables, and the transition equations.

In the Kalman filter approach to modeling technological change,
either simple random walks (I[1] processes) with or without drift, inte-
grated random walks (I[2] processes), or local linear trends (integrated
random walks with noise), which can show very varied behavior, are
typically used to represent the state of technology (Harvey & Marshall,
1991). In the simple random walk case actually used in this article, the
transition equations are as seen in Equation 3:

ait+1 = ait + ηit, (3)

where ηt is a random error process and ait is the vector of stochastic
trend(s). As in the case of the measurement errors, the error term in
Equation 3 can be correlated across countries. If there were no correla-
tion across countries, then technology would evolve completely inde-
pendently in every country. Convergence of technology across countries
requires that the state variables representing the state of technology in
each country cointegrate with each other.9 For this to occur, none of the
random shock variables can be completely independent of all the others,
which can be tested by examining the covariance matrix of the shocks.
This is similar to Strazicich and List’s (2003) time-series approach,
although they test for cointegration using conventional autoregressive
unit root tests and for the convergence of carbon emissions rather than a
convergence of technology.

To achieve identification, the total number of stochastic trends that
enter the measurement equations independently cannot exceed the
number of measurement equations. Obviously, we cannot then estimate
a technological change and an efficiency trend separately in each coun-
try. If we knew which country was the technology leader a priori, then
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9. Cointegration occurs when variables that contain random-walk components or sto-
chastic trends share these components so that some weighted sum of the variables does not
contain a random walk. If this does not occur, then a regression using these variables will
end up with a random walk in the residual term, which violates the classical regression
assumptions and invalidates any inference based on the regression results. If a group of
variables cointegrate, despite each following a random walk, then the group will tend to
move together, and, following shocks that push the variables apart, they will tend to con-
verge with each other again.
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we could model the trend in that country as the trend in pure technical
progress and introduce this trend, plus a catch-up trend in each country.
However, in general, the best we can achieve is to allow the state of tech-
nology to evolve separately in each country but to allow innovations to
these trends to be correlated. Decomposition into the two components is
achieved subsequent to estimation and a d Ait it

E
t
E= − +ln ln .

The Kalman filter estimates time series for each of the state variables,
given the values of the covariance matrices of the shocks in the measure-
ment and transition equations and the parameters γ and β in the frontier
model, which are known collectively as hyperparameters. The filter is
also used to compute the prediction error decomposition of the likeli-
hood function in parallel with the state vector. This likelihood function
in maximized using the Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
nonlinear optimization algorithm to find the maximum likelihood val-
ues of the hyperparameters. Given maximum likelihood estimates of the
hyperparameters, the Kalman filter produces maximum likelihood esti-
mates of the state variables using only data for previous periods. Given
these estimates, a smoother algorithm is used to calculate values for the
unobserved state variables utilizing the entire dataset. The initial state
can be estimated using the diffuse Kalman filter framework (De Jong,
1991a, 1991b).

CONVERGENCE AND DIFFUSION ANALYSIS

Convergence to the best practice frontier can be tested in a variety of
ways. First, we can check that the estimated state variable covariance
matrix has reduced rank, which indicates that the technology trends
cointegrate. Without cointegration, convergence is impossible. But it
does not necessarily mean that convergence will occur within the period
under consideration. Second, as in the traditional growth literature, we
can test whether there is negative correlation between initial income lev-
els and the growth rate of efficiency to see if efficiency rose faster in
poorer countries. These two approaches are broadly similar to Strazicich
and List’s (2003) time-series and cross-sectional tests for convergence,
respectively. Finally, the simplest convergence test of all is just to check
whether efficiencies are increasing throughout time, so that countries
are on average approaching the frontier. I also look at the variance of
efficiency throughout time.

It is important also to look at the relations between the efficiency com-
ponent and the level of adopted technology and a variety of variables,
such as gross domestic product (GDP) per capita, size of the economy,
and population density, that might be believed to influence environmen-
tal policy according to the environmental Kuznets curve literature. The
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first of these is just the standard EKC effect on abatement10—is the level
of abatement correlated with the level of income per capita? The second
is the Andreoni and Levinson (2001) proposal that abatement will be
greater in a larger economy. The third expresses the idea that with higher
population densities, more people will be affected by a given amount of
pollution and hence more abatement would optimally be undertaken.

Another hypothesis is that high levels of pollution result in action to
reduce that pollution, so that countries with high levels of emissions per
unit area are aggressive in adopting pollution-abating technology. This
would explain why Australia appears to be taking little action against
pollution and why China seems to be acting relatively early, given its
income level, to adopt Western standards. The problem with this is that
obviously pollution emissions are an endogenous variable partly deter-
mined by the state of technology. But, actually, the relevant variable is
what the level of pollution would be in the absence of abatement. The
higher this untreated level of emissions per unit area would be, the more
aggressive policy and voluntary action geared to abatement will be. The
log of the unabated level is equal to the log of observed emissions minus
the logarithmic state variable.

Anotion of the rate of diffusion can be gained by seeing, given the rate
of technical progress and the average rate of efficiency change in each
country, how long it will take each country to reach the state of technol-
ogy in the current technology leader. It is not possible to estimate a diffu-
sion curve for a specific technological shock.

Data Sources and Characteristics
and Cointegration Testing

The appendix11 gives details of the data sources. I assembled a panel
dataset for sulfur emissions and the explanatory variables for the period
from 1971 to 2000. Only 16 countries had complete data on all variables
in all years.12 Because of the slowness of estimation of high dimension
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10. I assume that the environmental Kuznets curve (EKC) theory is that abatement is
low in low-income countries and increases monotonically with income. Eventually, the
abatement effect, together with the composition, is supposed to overwhelm the scale effect.
In the EKC theory, income is also supposed to have a nonmonotonic effect on the composi-
tion effect.

11. Supplemental data may be found online at http://jed.sagepub.com/content/
vol14/issue1/.

12. Sulfur emissions data are not available for the 1990s for the Middle East, Africa, and
Latin America. However, since carrying out the analysis, I have located data for Mexico.
Data are available for 1991 to 1997 and 2000 for East and South Asian countries. Missing
data on economic structure caused me to drop Canada and some European countries.
Incomplete economic data led me to drop other countries, particularly in Eastern Europe.
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models of this type, I decided to estimate a model for the 16 countries
with complete observations on all variables: Australia, Austria, Bel-
gium, Denmark, Finland, France, Germany, Greece, Italy, Japan, Luxem-
bourg, Netherlands, Portugal, Spain, the United Kingdom, and the
United States.

The results showed that for much of the period, Luxembourg was on
the efficient frontier and strongly influenced the results on convergence.
Luxembourg is the smallest economy in the data set and also a very
energy and coal intensive economy. It has some of the highest per capita
carbon emissions in the world. Additionally, it has by far the highest
GDP per capita in the data set. The covariance between these variables
could result in biased estimation. It is also possible that emissions are
underreported. In 1971, its sulfur emissions per tonne of carbon were
some of the lowest of any year and any country. Therefore, I dropped
Luxembourg from the data set and estimated the model using the
remaining 15 countries.

The remaining data span small economies, such as Finland (54 billion
1995 PPP U.S. dollars in 1971), to the world’s largest economy, the United
States ($9.2 trillion in 2000), and there is a good range of sizes in between.
This should help in estimating the returns to scale parameter. Income per
capita levels vary from $6,745 (Portugal in 1971) to $33,293 (United
States in 2000). The former is less than Mexico today. Sulfur emissions
per capita vary from 2.3 kg (Austria in 2000) to 68 kg (United States in
1973) per year. Population density varies from 1.68 (Australia in 1971) to
383 people per square kilometer (Netherlands, 2000). Economies also
vary substantially in terms of energy mix, metal smelting, and, to some
degree, output structure, although there are no true agrarian economies
in the sample, as the lowest income level is above the global average.
Stern and Common (2001) found that using nonrandom samples in the
context of an inadequate statistical model, such as the EKC, leads to bias.
In the present case, although it would be desirable to include data from
poorer countries, the bias should be less as the model is statistically more
adequate, and problems caused by omitted variables bias are likely to
not be as severe. However, we do not know a priori how well the model
would perform as an explanation of developments in less developed
countries (LDCs).

Panel data sets of this type are likely to exhibit stochastic trends or
random walk components in the data (see Stern, 2004b). Perman and
Stern (2003) employ some recently developed tests for random walks, or
so-called unit roots, in panel data and find that sulfur emissions and
GDP per capita may contain a unit root. The unit root hypothesis could
be rejected for sulfur (but not GDP) using the Im, Pesaran, and Shin
(2003) test when the alternative was trend stationarity. But Perman and
Stern (2003) found that alternative hypotheses and tests result in accep-
tance of the unit root hypothesis for sulfur too. Heil and Selden (1999)
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and Coondoo and Dinda (2002) find unit roots for carbon dioxide emis-
sions and GDP in panel data. de Bruyn (2000) and Day and Grafton
(2003) carry out time-series unit root tests for the Netherlands, the
United Kingdom, the United States, West Germany, and Canada for a
variety of pollutants with very similar results. Furthermore, the techni-
cal change trends in the model in this article are random walks by
construction. Thus, we can conclude that as unit roots are present in
some of the variables and possibly in all of them, cointegration testing is
required.

Pedroni (1997) derives an appropriate test of cointegration in panel
data under the assumption that the regressors are exogenous and there is
a single cointegrating vector, which is appropriate in our case. When
there is a single cointegrating vector, panel estimates of the regression
parameters are consistent even in the face of noncointegration, although
they can show small sample bias. The convergence rate is proportional
to N (Kao, 1999; Pedroni, 1997). But very large cross-sectional samples
are probably needed before we can safely ignore the cointegration issue.
In any case, under noncointegration, the estimate converges to zero,
even if some RHS variables are related to the dependent variable and the
t statistics of the parameters diverge. These results do not hold if slope
heterogeneity is allowed. The result does allow the constant in the
cointegrating relation to vary across countries. The following test statis-
tic (Equation 4) is particularly easy to construct:
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This version of the test does not require any auxiliary regressions but
does not include a correction for higher order serial correlation. It
assumes that the autoregressive parameter is equal across all countries.

Results and Analysis

ECONOMETRIC RESULTS

As it was not practical to estimate multiple versions of the model for
15 or 16 country samples, Stern (2004a) estimates several versions of the
model for five countries—Australia, France, Germany, the United King-
dom, and the United States—to find the appropriate form of the model.
The model with the highest Akaike information criterion was found to
have I(1) technology trends with constant drift terms, correlated state
variable shocks, and heteroskedastic but independent measurement
errors. I chose to restrict the drift term to zero in the 15-country model to
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reduce the number of parameters to be estimated and simplify the test of
convergence to be one of just the correlation between the shocks to the
state variables.

Table 1 presents the significance level of the Q(1) and Q(7) statistics,
which test first-order serial correlation of the residuals and higher order
serial correlation up to seven lags, respectively. The picture is a little
mixed. The tests show that the residuals for Belgium and Spain show
first-order serial correlation that is significant at the 1% level. Several
countries have significant higher order serial correlation. Therefore, the
reported standard errors for the model parameters could indicate higher
precision of estimation than is actually the case. These results indicate
that the model might benefit from either an I(2) specification of the
trends or more sophisticated estimation techniques, neither of which has
been attempted.

However, the Pedroni (1997) statistic (4) adjusted to have a standard
normal distribution is –93.97, which clearly rejects the null of no
cointegration. Even if higher order serial correlation in the residuals
affects the statistic, this statistic is so large in absolute value to leave no
doubt that cointegration is achieved. Of course, given the stochastic
trends included in the model, the possibility that the model would not
cointegrate is remote.
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Table 1
Country-Specific Statistics

Standard Significance Significance Average Number
Error of of of of Years

the Residuals Q(1) Q(7) From Frontier

Australia 0.1133 0.0850 0.3255 ∞
Austria 0.0043 0.1983 0.2497 8
Belgium 0.1289 0.0023 0.0496 16
Denmark 0.2820 0.7404 0.1351 8
Finland 0.2420 0.9904 0.2741 12
France 0.1290 0.1092 0.2427 54
Germany 0.0060 0.1685 0.0303 21
Greece 0.1951 0.0599 0.2609 ∞
Italy 0.0022 0.1070 0.1837 36
Japan 0.0135 0.0043 0.0068 2
Netherlands 0.1850 0.8134 0.0000 7
Portugal 0.2184 0.0151 0.0000 30802
Spain 0.1510 0.0032 0.0017 67
United Kingdom 0.1855 0.3511 0.2946 54
United States 0.0072 0.0509 0.0096 63
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The standard errors of each country’s residuals series are also given in
Table 1. These have a 0.66 correlation with the reciprocal of the mean
square root of population in each country, which are the weights used by
Stern (2002) to accommodate the effects of grouping heteroskedasticity.
This indicates that grouping heteroskedasticity is important and that
this model can accommodate it. Future modeling efforts could impose
such a structure on the error covariance matrix to reduce the number of
parameters to be estimated.

Table 2 presents estimates of the frontier parameters and tests of their
significance. The values of the coefficients are mostly close to expecta-
tions. Coefficients are estimated relative to the sample mean effects, so
that a negative coefficient means that increasing that input, ceteris pari-
bus, lowers emissions relative to the sample mean. The coefficients on
fuels and other commodities have also been normalized to sum to unity,
and this, together with the nonconstant returns to scale, means that we
cannot directly interpret the coefficients in an absolute sense. Among the
fuels, coal has the highest coefficient, followed by oil, biomass, natural
gas, and the two forms of primary electricity. This ordering is expected
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Table 2
Frontier Parameter Estimates

Variable Coefficients SE t Statistic

Coefficients of sulfur WRT fuels
Coal 0.0607 0.0104 5.83
Oil 0.0337 2.65E-03 12.70
Natural gas –0.0173 3.15E-03 –5.48
Hydro –0.0615 0.0159 –3.87
Nuclear –0.0157 1.61E-03 –9.78
Biomass 0.0187 0.0194 1.70

Coefficients of sulfur WRT other
commodity production

Oil refining 0.0081 8.43E-04 9.60
Copper 0.7730 0.1154 6.69
Zinc 0.2516 0.1417 1.77
Lead 0.3720 0.6666 0.56
Nickel –0.4231 NA NA

Output elasticities of sulfur
WRT to industries

Agriculture 0.0092 NA NA
Nonmanufacturing industry 0.0050 0.0194 0.28
Manufacturing 0.0022 0.0516 0.03
Services –0.0164 0.0498 –0.32
Returns to scale in inputs 0.7678 0.0310 24.79

Note: WRT = with respect to.
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and similar to that in Stern (2002). Among the other commodities, cop-
per and zinc have the two greatest significant coefficients. The relatively
small but significant coefficient on oil refining is surprising. None of the
industry coefficients is significantly different from zero. This could
imply either that controlling for fuel mix, metal smelting, and oil refin-
ing, abatement is relatively stronger in the industries that would be
expected to have higher emissions before abatement, or that the patterns
of emissions by industry vary too much across the sample to result in sig-
nificant effects in the sample as a whole.13

The returns-to-scale parameter is significantly less than unity, con-
firming the Plassmann-Khanna (2003) hypothesis. Increasing returns to
scale were also found for all of the five country models.

Figure 2 presents the antilogarithms of the state variables for each
country and time period. As explained above, these states are the actual
level of emissions-specific technology in each country and include both
the effects of changes in best practice and the relative levels of efficiency
or adoption in each country. With the singular exception of Australia, a
general downward trend, showing a ceteris paribus reduction in sulfur
emissions, is apparent. Portugal starts the period as the cleanest country
all things considered. Japan sees a rapid improvement in the first few
years and forms the best practice frontier from 1973 to 1990. From 1990 to
1999, Austria is on the best practice frontier. Denmark becomes the
cleanest country in 2000. United States starts the period as the dirtiest
economy and ends it slightly better than Australia, which is now the
dirtiest economy in the sample.

The initial scatter of countries sorts out into two clear groups by the
end of the period. The low pollution group consists of Austria, Belgium,
Denmark, Finland, Germany, Japan, and the Netherlands. None of these
names is a surprise as countries that might be pursuing a more stringent
environmental policy. The higher pollution group consists of Australia,
France, Greece, Italy, Portugal, Spain, the United Kingdom, and the
United States. With the exception of Germany and Japan, the larger
economies are in this second group as are the two poorest economies.

That Australia shows no apparent convergence with the other coun-
tries is also no surprise, given the remoteness of its location, its low pop-
ulation density, and its government’s policy as expressed, for example,
in its negotiation of an increase in carbon emissions at Kyoto and ten-
dency since then to follow the U.S. line on climate policy. Also of interest
is Germany, which was a member of the higher polluting group until
1987 and, similar to Australia, was moving to higher emissions. Then,
Germany made a very rapid move in the opposite direction, following
the Long Range Transportation of Atmospheric Pollution (LRTAP)
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13. The latter seems more likely, as the effects are significant in the five-country sample.
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agreement and, subsequently, reunification to join the low pollution
group. Japan cut emissions dramatically in the early 1970s. This period
followed various environmental catastrophes in Japan, such as the
Minamata mercury poisoning and asthma because of sulfur dioxide
emissions that resulted from the very rapid postwar economic growth.
Environmental policy regarding air and water pollution was first intro-
duced in this period (Ziegler, 1995). This suggests that unhealthily high
levels of pollution result in action being taken regardless of the state of
development in an economy.14 On the other hand, France shows slowly
improving technology and belongs to the high-polluting group. With its
strong emphasis on nuclear power and relatively small tradition of
heavy industry compared to some other developed countries,
preabatement levels of pollution are lower than in some other countries.
Thus, there may be less emphasis on reducing pollution further. Other
factors affecting technology adoption may be more abstract, such as pos-
sible cultural factors that keep pollution levels higher in English- and
Latin-speaking countries. For example, it is well known that the initial
United Kingdom government action under the LRTAP agreement was
minimal compared with other European countries (Levy, 1994). These
patterns are explored in a quantitative manner in the Diffusion Analysis
section below.
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Figure 2: Emissions Technology Trends
Note: The y-axis indicates the state of technology. The figures are a unitless index.

14. I am not suggesting that the same action will be taken in every country in reaction to
a given level of pollution. The potential level of pollution is one factor in a multifactor
model that would explain policy stringency.
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CONVERGENCE

In this section, I examine the evidence for emissions-specific techno-
logical convergence across countries. As explained above, convergence
in technology is only possible if the covariance matrix VAR(η) is reduced
rank. This can be determined from the eigenvalues of VAR(η). This is the
first necessary condition for potential convergence; the second is to
determine that none of the countries has an idiosyncratic shock not
shared by any of the other countries. During the estimation procedure, it
became apparent that the number of nonzero eigenvalues of VAR(η) was
at most nine. This restriction was then imposed in the final estimation
iterations as it saves on nonlinear estimation of 21 parameters. There-
fore, I can conclude that H is reduced rank.

The second necessary condition is that there are no idiosyncratic
shocks that are not shared by another country. Actually this condition
implies the first. Based on the estimated t statistics (not presented in this
article), all but one of the columns of the Choleski decomposition of
VAR(η) have two or more significant parameters at the 5% level. At the
10% level, all have at least two significant parameters. Therefore, there
are no idiosyncratic shocks that are not shared by any other countries.
However, many of these correlations are negative, particularly between
Australia and the other countries and so these results are hard to inter-
pret. Further tests are needed to determine if convergence occurred
during the 30-year sample period.

Figure 3 shows the trends in distance from the best practice frontier in
each country throughout time. The trends seem to divide into four
subperiods. In the period from 1971 to 1972, all countries appear to con-
verge though this probably is an artifact of the upward move in Portu-
gal’s state of technology during this period. From then until around
1982, with the exception of Japan, most countries appear to drift away
from the frontier. From then until the late 1990s, the low pollution group
emerges and converges on the frontier, whereas the high pollution
group increases its distance. Finally, in 2000, all countries apart from
Denmark diverge strongly from the frontier. This is an artifact of the fall
in the technology state in Denmark that year. Relative to Japan and Aus-
tria, there is little divergence in the final year.

Examination of the statistical behavior of distance with time shows
some evidence of divergence during the 28 years from 1972 with a
slowly increasing mean and variance (see Figures 4 and 5).15 Each coun-
try, on average, maintained its average efficiency level relative to best
practice from the mid-1980s to 1999; thus, there has not been conver-
gence in relative terms. However, the state of technology cannot decline
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15. Supplemental data may be found online at http://jed.sagepub.com/content/
vol14/issue1/.



Copyright 2005. Permission granted by Sage Publications

below zero emissions, and, therefore, if the trend is down in most coun-
tries, technology will converge in terms of levels, though not necessarily
in terms of logarithms, which depends on the relative distance. Exami-
nation of the mean of the state of technology and its variance shows
convergence on that basis.

Finally, I carry out the traditional test of convergence from the growth
literature, which asks whether there is a correlation between the rate of
technological change and initial income. The correlation between 1971
income and the mean log first difference of the technology state variable
is –0.33, rising to –0.38 for log initial income. The t statistics are only –1.27
and –1.50. Thus, although the relationship has the expected sign, the
association is not that strong.

DIFFUSION ANALYSIS

In this section, I compute correlations between the state of absolute
and relative technology and possibly relevant variables that affect the
adoption of technology as described above. Then, I compute the time it
takes for technology to diffuse from leader to follower countries.

I computed the correlation matrix between the logarithms of the state
variable and distance and the logs of GDP per capita (lnGDP/P), total
GDP, population density (lnP/A), and preabatement emissions per
square kilometer (lnS*/A), which are tests of the four hypotheses dis-
cussed in the Modeling Technological Change Using the Kalman Filter
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section above: the EKC effect on technology, the Andreoni-Levinson
(2001) hypothesis, the population density effect, and the pollution con-
centration effect. These are presented in Table 3. All the correlations
between lnDistance and lnState and the other variables are nominally
highly significant apart from the relation between lnDistance and
lnGDP per capita. The relation of GDP per capita with the state of tech-
nology does have the expected sign; higher income leads to adoption of
lower emissions technology. The correlations with total GDP are posi-
tive, which contradicts the Andreoni-Levinson hypothesis that larger
economies have an economy of scale in abatement and hence are likely
to show higher levels of abatement. The correlations with population
density and unabated emissions per unit area are all negative as
expected. Higher pollution concentrations and greater numbers of
affected people are associated with more abatement. But these two vari-
ables are strongly correlated with each other, and it would be difficult to
distinguish their effects.

Table 1 also presents the average distance of each country from the
frontier technology in terms of years. This is computed as follows: How
many years will it take the country to reach the level of technology in
today’s technology leader at the average logarithmic rate of change of
the state variable in that country during the entire 30-year period. This
distance was then averaged for each country during the 30-year period.
Australia and Greece are an infinite time from the frontier because their
average rate of technological change is positive rather than negative.
Portugal is also an effectively infinite time from the frontier. Japan is on
average closest, but the United States is far by this measure. So there is no
simple relationship between income level and the rate of diffusion.
Instead the countries are differentiated again by membership in the low
pollution and high pollution groups. The population weighted mean for
the low pollution group is 10 years, whereas the weighted mean for the
high pollution group (dropping Australia, Greece, and Portugal) is 58
years.
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Table 3
Correlation Matrix

lnDISTANCE lnSTATE lnGDP/P lnGDP lnP/A lnS*/A

lnDISTANCE 1.000
lnSTATE 0.751 1.000
lnGDP/P 0.059 –0.363 1.000
lnGDP 0.406 0.262 0.456 1.000
lnP/A –0.213 –0.216 –0.088 0.136 1.000
lnS*/A –0.308 –0.287 –0.016 –0.011 0.942 1.000
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Discussion and Conclusion

This article has presented an approach to measuring environmental
efficiency and demonstrated that the Kalman filter is a viable method for
estimating technological change in panel data that produces plausible
results. However, the dimension of such models has to be fairly small for
reasonable estimation times on personal computers. I have also tested a
number of key hypotheses from the environmental Kuznets curve and
growth literature using a data set for sulfur emissions in 15 mostly
developed countries for a 3-decade period. On a methodological level,
the article makes the following original contributions:

1. The production frontier is manipulated to measure environmental (emis-
sions) efficiency directly. Previous studies either estimate it indirectly or
make special assumptions regarding separability.

2. I model technological change using the Kalman filter, which has not pre-
viously been done using panel data.

3. I estimate the inefficiency components using the Kalman filter too. This
has not been done before. This imposes far fewer restrictions on the diffu-
sion of technology across countries than imposed by previous economet-
ric approaches.

In a departure from Stern (2002), I found no significant effect of indus-
try mix on emissions. I found that the elasticity of emissions, with
respect to aggregate inputs, was less than unity, which supports the
Plassmann-Khanna (2003) hypothesis that there are pre-abatement
economies of scale. An exploratory analysis does not support the
Andreoni-Levinson (2001) hypothesis that there are economies of scale
in abatement so that larger economies would have lower emissions, cet-
eris paribus. There was some support that higher income per capita,
higher population density, and higher potential preabatement emis-
sions are associated with a higher level of abatement technology. The lat-
ter two factors combined with the finding on the Plassmann-Khanna
hypothesis might explain the recent moves in China to address pollution
problems discussed in the beginning of the article. However, income per
capita did not explain distance from the frontier or the rate of
convergence on the frontier.

However, the countries included in this study have, throughout time,
sorted out into two groups: a high pollution group and a low pollution
group, consisting of Japan and Germanic and Scandinavian countries
that have adopted a much higher level of technology. Anglo-Saxon and
Latin or Mediterranean countries seem less concerned with pollution;
the United Kingdom and the United States are in the high-polluting
group, whereas Australia is diverging from all the other countries and
seeing a somewhat declining level of abatement technology. All coun-
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tries but Australia, Portugal, and Greece are converging toward the best
practice frontier, but the other members of the high-polluting group are
converging very slowly. Convergence is not very strong overall; the
average distance from the frontier is maintained throughout time, and
the relation between initial income and the rate of technological change
has the expected sign but high variance. My previous research (Stern &
Common, 2001) has shown that there is also such technological change
in developing countries but perhaps at a slower rate than in the average
developed country. As I find a variety of rates of emissions-abatement-
specific technological change across countries in this article, we might
also expect this rate to vary dramatically across the developing world
too.

The results show that technology does not evolve independently in
each country, but neither is it a question of adopting different amounts of
the same technology in all countries. The estimation identified up to nine
separate components of technological change that appear in different
mixes in different countries.

A limitation of this study is that only 30 years of data from 15 mostly
developed countries was used to estimate the model. As mentioned in
the Data Sources and Characteristics and Cointegration Testing section,
this could introduce bias. We do not know a priori how well the model
would perform as an explanation of developments in LDCs. As the
model appears to be more statistically adequate than EKC models, this
bias might be expected to be less than in the case of EKC models esti-
mated with nonrandom samples. Equally important may be the fact that
the sample only covers a recent 30-year period. Understanding the long-
term evolution of the economy, resource use, and environmental
impacts may require analysis of very-long-term time series spanning
centuries (Kander & Lindmark, in press). In a qualitative sense, the
results of this study seem intuitively reasonable in the light of my past
research, but we should not place too much confidence in the exact
quantitative results.

The analysis could be extended by carrying out a decomposition of
emissions as performed by Stern (2002). The results in this article sug-
gest that emissions-specific technological change will dominate all other
effects to a greater extent than shown by that previous study. Applying
more sophisticated estimation procedures to address the remaining
residual serial correlation issue may be too computationally expensive
at present, but should be explored.

Application of the method to other pollutants will differ depending
on the pollutant in question. For example, there is no abatement technol-
ogy for carbon dioxide emissions apart from fuel switching and
improvements in energy efficiency. Therefore, there is no need to use the
Kalman filter to model the state of an unobserved abatement technology.
The state of technology in this model is defined by the relation between
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inputs and good outputs in analogy to what I referred to as TFP in the
sulfur model in this article. The model would relate carbon emissions
directly in an unchanging parametric fashion to the inputs. Nonlinear
regression should be sufficient for estimating such a model, and much
larger numbers of countries can be included at low computational cost.
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